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How syntactically productive are children's early utterances?
● We compare models of early syntactic development, the CBL of McCauley and 

Christiansen (2019) and an  LSTM recurrent neural network model to determine 
which one better reproduces the syntactic production behavior of children.

● HYPOTHESIS: CBL will perform worse than the LSTM at predicting longer child 
utterances. Shorter utterances can be memorized by both models; Longer 
utterances likely require learning some intermediate structure.
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CONCLUSIONS

● Learns multiword chunks using backward transition probabilities
— no other abstraction

● E.g. Chunk processing for ‘The dog chased the cat.’

Chunk Based Learner (CBL) - McCauley & Christiansen (2019)

● Straightforward NLP 
model used for language 
modelling

● Able to learn longer 
dependencies (Linzen et 
al. 2016) and 
representational 
abstractions

● LSTM has better performance overall, supporting our hypothesis that 
abstractions learned by LSTMs better model child production behavior. 

● BUT: Neither model was able to reliably predict longer child utterances, 
suggesting that models learning more structured grammatical 
representations are more suited to describe children’s syntactic acquisition. 

● 39 English CHILDES corpora
○ At least 1:20 child/caregiver 
○ At least 20 000  words

Mean production score using greedy decoder
● CBL: .57, 95%CI[.53-.60] 
● LSTM: .62, 95%CI[.58-.66] 
Mean production score using beam search 
decoder
● CBL: .63, 95%CI[.59-.66] 
● LSTM:  .69, 95%CI[.65-.73] 

● BUT: Performance is largely driven by shorter utterances (2- 4 words). Performance drops as 
utterances grow more complex.
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PROBLEM

● Originally from McCauley & Christiansen (2019)
● Can models reproduce child utterances?
● 1 trained model/1 child (each CHILDES corpus)
● Models must reorder the tokens of a child utterance.
● For CBL, tokens are chunks (multi word); For LSTM, tokens are words.
● ESTIMATION PROCEDURES:

○ Greedy decoder - Always return the most probable next token 
(returns 1 solution).

○ Beam Search decoder - At each state, keep track of the k=5 most 
probable beams for the next state (returns 5 solutions).

Production Score = proportion of correctly reordered utterances from 
test set
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● Train: 100% child directed utterances + 
60% child utterances

● Test: 40% held out child utterances

Average model performance by utterance length


